Aplicación de la teoría de esfuerzos en cables trenzados en conductores eléctricos tipo ACSR

ARTÍCULO INVITADO

J. Colin Venegas, A. Lara López,
J. J. Razo García, D. Reyes Ramirez
Facultad de Ingeniería Mecánica, Eléctrica y
Electrónica de la Universidad de Guanajuato
Tampico 912, C.P. 36730, Salamanca, Gto; México

ABSTRACT

In this paper the stress analysis of two ACSR type electrical conductors is presented. The analysis is done by the application of the stress wire multilayer strand theory. The cable is submitted to an axial and flexural load. The results are compared with the stress calculated with the simplified Poffenberger-Swart equation.

RESUMEN

En el presente artículo se presenta un análisis de los esfuerzos en dos conductores eléctricos tipo ACSR utilizando la teoría de esfuerzos en cables trenzados sometidos a tensión y flexión. Los esfuerzos así determinados son comparados con los obtenidos mediante la fórmula simplificada de Poffenberger-Swart.

NOMENCLATURA

\(R \) \(L \) Radios de la hélice en estado deformado y no
deformado respectivamente; m

\(m(j) \) Número de alambres en la capa j

\(\alpha \) Angulo de la hélice j; \(^\circ\)

\(R \) \(m \) Radio del alambre central; m

\(R \) \(h \) Diámetro de los alambres de la capa j; m

\(h \) \(h \) Longitud de una parte del cable en el estado no
deformado y deformado; m

\(P \) \(p \) Paso de la hélice en la capa j

\(N \) \(N \) Fuerzas cortantes en la dirección de x y; N

\(T \) \(T \) Tensión a lo largo del cable; N

\(T \) \(T \) Tensión a lo largo del eje de cada alambre, N

\(G \) \(G \) Componentes del momento flexionante en la dirección
del eje x, y; N⋅m

\(H \) \(H \) Momento de torsión en la dirección z; N⋅m

\(X, Y, Z \) \(X, Y, Z \) Cargas externas por unidad de longitud; N/m

\(K, K' \) \(K, K' \) Momentos externos por unidad de longitud en las
direcciones x, y, z; (N m)/m

\(E \) Módulo de Young del del aluminio, N/m²

\(G \) Módulo de Corte N⋅m²

\(I \) Momento de Inercia de sección transversal; m⁴

\(\nu \) Modulo de Poisson

\(m \) \(m \) Momento flexionante en la capa j

\(\sigma \) \(\sigma \) Esfuerzos, por carga i, en capa j

INTRODUCCIÓN

Las líneas de alta tensión frecuentemente están sometidas a la acción del viento lo cual les provoca una vibración transversal y por lo tanto esfuerzos alternantes. El complejo mecanismo de interacción entre los alambres de un conductor eléctrico sometido a flexión alternante, ha dificultado el cálculo de los esfuerzos en forma aproximada a los esfuerzos reales, de tal manera que es difícil poder predecirlos. Sin embargo, existen normas y guías para la realización de pruebas en laboratorios donde, es posible simular las condiciones similares a las que se presentan en el campo de tal manera que, se puede obtener información que facilite el estudio de su comportamiento dinámico y la relación con los esfuerzos que se presentan; ver Figura 1[11]. Poffenber y Swart propusieron una forma simplificada para estimar los esfuerzos de la capa más extrema de alambres al relacionarlos con una amplitud flexionante máxima permisible \(Y_{1} \), la cual es medida a una distancia de 0.089m del punto de fijación de uno de los extremos del cable Figura 7. El desarrollo teórico para el cálculo de esfuerzos y los valores máximos permisibles están reportados en el EPR[2]. Diferentes autores han realizado estimaciones más próximas a los esfuerzos reales, entre ellos Costello[1]. Para los cables que se están analizando las características se resumen en la Tabla 1.

CONFIGURACIÓN DE UN CABLE TRENZADO

La configuración básica de un cable trenzado es presentada en la Figura 2. Se pueden ver las secciones correspondientes al alambre central y de una capa contigua perpendiculares al eje del cable. Un conjunto de ecuaciones válidas dentro del límite elástico han sido propuestas por Costello[1] y por Kumar, et al[3] y se presentan en seguida:

\[
R_2 \left[1 + \frac{\tan \left(\frac{\pi}{2} - \frac{\pi}{2m_2} \right)}{\sin^2 \alpha_2} \right] < R_1 + R_2
\]

(*1*)
esto es la condición para que no exista contacto entre los alambres contiguos de una misma capa; para capas posteriores condición similar se puede establecer. El ángulo y radio de hélice para cualquier capa se calcula mediante la expresión [1,3]:

\[\tan \alpha_j = \frac{P_j}{2\pi r_j} \]
(2)

En el estado no deformado el radio de la hélice está dado por:

\[r_j = R_1 + R_2 + 2R_3 + \cdots + 2R_{j-1} + R_j \]
(3)

y en el estado deformado \(j \) se ve influenciado por la razón de Poisson \(V_j \) del material en cada capa:

\[r_j = R_1(1-v_{1}S_j) + 2R_2(1-v_2S_j) + 2R_3(1-v_3S_j) + \cdots + 2R_{j-1}(1-v_{j-1}S_{j-1}) + R_j(1-v_jS_j) \]
(4)

COMPONENTES DE CURVATURA Y DE TORCIMIENTO

La Figura 3 presenta para cada alambre las componentes de curvatura por unidad de longitud \(k_0, k'_0 \) y \(\tau_0 \) en las direcciones \(x, y \) y \(z \) respectivamente, las cuales tienen las expresiones siguientes:

\[k_0 = 0, \quad k'_0 = \frac{\cos^2 \alpha_0}{r_0}, \quad \tau_0 = \frac{\sin \alpha_0 \cos \alpha_0}{r_0} \]
(5)

El subíndice cero corresponde al estado no deformado del alambre. Las componentes de curvatura se encuentran al descomponer una velocidad angular \(\omega_0 \), dirigida a lo largo del eje del cable, en las direcciones \(k_0, k'_0 \) y \(\tau_0 \); \(\omega_0 \) es una velocidad angular que corresponde al movimiento de un punto que se mueve con la velocidad unitaria a lo largo del eje del alambre o línea de la hélice. Ahora, cuando el cable es cargado, los alambres sufren deformaciones y entonces se tienen las componentes de curvatura en el estado deformado:

\[\bar{k} = 0; \quad \bar{k}' = \frac{\cos^2 \alpha}{r}; \quad \bar{\tau} = \frac{\sin \alpha \cos \alpha}{r} \]
(6)

El que la componente de curvatura de \(k'_0 = k = 0 \), significa que el eje \(X' \) siempre cruza perpendicular al eje del cable.

FUERZAS QUE ACTÚAN SOBRE UN SOLO ALAMBRE DEL CABLE TRENZADO

La Figura 4 presenta las fuerzas que en general producen la deformación de un alambre en el cable trenzado. Al tomar un elemento diferencial de longitud \(ds \) y sumar todas las fuerzas y momentos en las direcciones correspondientes se obtiene el conjunto de las ecuaciones diferenciales siguientes [1]:

\[\frac{dN}{ds} - N'\tau + Tk' + X = 0 \]
(7)

\[\frac{dN'}{ds} - Tk + N\tau + Y = 0 \]
(8)

\[\frac{dT}{ds} - N'k' - N'' \kappa + Z = 0 \]
(9)

\[\frac{dG}{ds} - G'\tau + Hk' - N' + k = 0 \]
(10)

\[\frac{dG'}{ds} - Hk + G\tau + N + k' = 0 \]
(11)

\[\frac{dH}{ds} - Gk' + G'k + \theta = 0 \]
(12)

6 ecuaciones para un alambre sometido a cargas y momentos; donde \(k', k'' \) y \(\tau \) son las componentes de curvatura en el estado ya deformado.

RELACION ENTRE LAS FUERZAS Y MOMENTOS CON LAS COMPONENTES DE CURVATURA

De la teoría básica de resistencia de materiales se tiene que en general el momento flexionante está expresado mediante la ecuación siguiente:

\[G = EI \frac{d^2 y}{ds^2} = EI \frac{d\phi}{ds} \]
(13)

Entonces como \(d\phi = (k - k_0)ds \)

\[G = EI (k - k_0) = \frac{\pi R^4}{4} E(k - k_0) \]
(14)

Es así que bajo el mismo método y basándose en la ecuaciones de resistencia de materiales correspondientes se obtienen las ecuaciones adicionales:

\[G' = E \frac{\pi R^4}{4} (k' - k'_0) \]
(15)

\[H = G' J (\tau - \tau_0) = E \frac{\pi R^4}{4} (1 + \nu) (t - \tau_0) \]
(16)

\[T = A E \varepsilon = \pi R^2 E \varepsilon \]
(17)

Ecuaciones que serán utilizadas para encontrar la respuesta a una carga axial constante.
RELACIÓN DE COMPONENTES DE CURVATURA Y DEFORMACIÓN AXIAL

La deformación axial e del alambre central tiene un papel importante para el análisis del esfuerzo en los alambres de las capas internas y externas del cable trenzado. La figura 5 presenta el desarrollo de la línea de centros de uno de los alambres de la segunda capa en un estado inicial y en su configuración deformada final.

Basándose en la teoría de deformación longitudinal se obtiene la expresión siguiente:

$$ \varepsilon = \frac{h - \alpha}{h} = \varepsilon_1 \tag{18} $$

$$ \varepsilon = \varepsilon_1 = \left(1 + \varepsilon_2 \right) \frac{\text{sen} \alpha_2}{\text{sen} \alpha_2} - 1 \tag{19} $$

donde ε_1 y ε_2 son las deformaciones de los alambres de la primera y segunda capa respectivamente. Otra deformación importante es la deformación rotacional β_2, de cualquiera de los alambres de la segunda capa la cual es expresada como:

$$ \beta_2 = \frac{\phi_2 - \phi_2}{h} \tag{20} $$

donde ϕ_2 es el torcimiento por unidad de longitud y está dado por:

$$ \phi_2 = \frac{(\phi_2 - \phi_2)}{h} \tag{21} $$

Bajo la consideración de que $|\Delta \alpha_2| = |\alpha_2 - \alpha_1| << 1$ donde α_1 y α_2 es el ángulo de hélice del cable trenzado en la posición deformada y no deformada respectivamente y de que $\text{sen} \Delta \alpha_2 = \alpha_2$, se obtiene la ecuación siguiente:

$$ \beta_2 = \left[\frac{(\varepsilon_2 - \varepsilon_2)}{\text{tan} \alpha_2} - \Delta \alpha_2 \right] - \frac{1}{\text{tan} \alpha_2} \tag{22} $$

Por otra parte R_j en la posición deformada, se ve influenciada por la razón de Poisson:

$$ r_j = R_j \left(1 - \nu \varepsilon_2 \right) + R_j \left(1 - \nu \varepsilon_2 \right) \tag{23} $$

de tal manera que finalmente

$$ \varepsilon_2 = \varepsilon_1 - \frac{\Delta \alpha_2}{\text{tan} \alpha_2} \tag{24-1} $$

Para $j \geq 2$:

$$ r_j = 1 + \frac{Q_j}{r_j} \tag{25} $$

donde Q_j está dado por la ecuación:

$$ Q_j = v_j R_j \varepsilon_j + \cdots + \sum_{i=1}^{j-1} v_j R_j \varepsilon_j + v_j R_j \varepsilon_j \tag{26} $$

tenemos para cada capa $j \geq 2$:

$$ \beta_j = \frac{\varepsilon_j}{\text{tan} \alpha_j} - \Delta \alpha_j \frac{Q_j}{r_j \text{tan} \alpha_j} \tag{27} $$

$$ p_j = \frac{\Delta \alpha_j}{\text{tan}(\alpha_j)} \tag{28} $$

ANÁLISIS DEL ALAMBRE SOMETIDO A CARGA AXIAL

Debido a la condición de no contacto dada por la Ec. (1)

$Y = 0$; Se considera que no existen momentos externos K_x y K_y. Además se considera que la tensión a lo largo de la sección transversal del alambre es constante. Por lo tanto el conjunto de Ecs.(7) a (12) se transforma en[1]:

$$ -N_2 \varepsilon_2 + T_2 \varepsilon_2 + X_2 = 0 \tag{29} $$

$$ Y_2 = 0 \tag{30} $$

$$ Z_2 = 0 \tag{31} $$

$$ -G_2 \varepsilon_2 + H_2 K_2 - N_2 = 0 \tag{32} $$

$$ N_2 = 0 \tag{33} $$

$$ \theta_2 = 0 \tag{34} $$

Todas las ecuaciones anteriores sirven como base para determinar las fuerzas en cables trenzados con número de capas mayores a 1 y se presentan en seguida:

$$ R_j \Delta k_j = -2 \sin \alpha_j \cos \alpha_j \Delta \alpha_j \frac{Q_j \cos^2 \alpha_j}{r_j R_j} \tag{35} $$

$$ R_j \Delta r_j = \frac{1 - 2 \sin^2 \alpha_j \Delta \alpha_j \frac{Q_j \sin \alpha_j \cos \alpha_j}{r_j R_j}}{\frac{r_j}{R_j}} \tag{36} $$

Ingeniería Mecánica

Aplicación de la teoría de esfuerzos en cables trenzados en conductores tipo ACSR
\[
\frac{G_j'}{ER_j'} = 4 R_j \Delta k_j \\
H_j \frac{\pi}{ER_j^2} = 4 \left(1 + v_j \right) R_j \Delta \tau_j \\
T_j = \pi ER_j^2 e_j \\
X_j = \left(N'_j \sin \alpha_j \cos \alpha_j - T_j \cos^2 \alpha_j \right) \frac{1}{r_j}
\]

Ecuaciones que permiten encontrar las cargas sobre los alambres del cable. Proyectando la tensión \(T_j\) y la fuerza cortante \(N'_j\) a lo largo del eje del cable se puede encontrar la fuerza axial:

\[
F_j = m(j) \left[T_j \sin \alpha_j + N k \cos \alpha_j \right]
\]

Proyectando \(H_j\) y \(G_j'\) en la dirección axial del cable y tomando los momentos de \(T_j\) y \(N'_j\) alrededor del eje del cable se obtienen los momentos:

\[
M_j = m(j) \left[H_j \sin \alpha_j + \sigma'_j \cos \alpha_j + T_j r_j \cos \alpha_j - N'_j r_j \sin \alpha_j \right] \frac{1}{r_j}
\]

Por lo tanto la Fuerza y Momento axial total es:

\[
F_T = F_1 + \sum_{j=2}^{N} F_j \\
M_T = M_1 + \sum_{j=2}^{N} M_j
\]

donde \(F_j\) y \(M_j\) están dados por:

\[
F_1 = \pi E R_1^2 \tau_1 \\
M_1 = \pi E R_1^2 \tau_1 \frac{1}{4 \left(1 + v_1 \right)}
\]

FLEXIÓN PURA SOBRE EL CABLE TRENZADO

Primero se analiza uno de los alambres sometido a un momento flexionante. La figura 6 muestra el alambre helicoidal flexionado. Como está solo sometido a flexión las ecuaciones de equilibrio se reducen a:

\[
\frac{dG_B}{ds} - G_B \tau + H_B k'' = 0 \\
\frac{dH_B}{ds} = -H_B k'' + G_B \tau = 0 \\
\frac{dH_B}{ds} = -G_B k'' + G_B \tau = 0
\]

Las cuales en base a las demás ecuaciones se transforman en:

\[
\frac{dG_B}{ds} - 4 \frac{\pi R^2}{E} \frac{1}{r} G_B \frac{\cos \alpha}{r} G_B + \frac{\cos \alpha}{r} H_B = 0 \\
\frac{dG_B}{ds} + 4 \frac{\pi R^2}{E} \frac{1}{r} G_B \frac{\cos \alpha}{r} G_B = 0 \\
\frac{dH_B}{ds} = \frac{\cos^2 \alpha}{r} G_B = 0
\]

Bajo las consideraciones de que el coeficiente de Poisson influye muy poco en la solución exacta se obtiene la solución:

\[
G_B = m_s \cos ks \\
H_B = m_s \cos \alpha \ senks \\
G_B'' = -m_s \ senks
\]

donde:

\[
k_j = \frac{\cos \alpha_j}{r_j}
\]

que son los momentos flexionantes y cortantes, donde \(m_s\) está dado por:

\[
m_s = \frac{\pi R^2}{E} \frac{\cos \alpha}{4\epsilon}
\]

Costello[1] encontró la ecuación que incluye la razón de Poisson \(\nu\) y \(m_s\) está dado por:

\[
m_s = \frac{\pi R^2}{2 \left(1 + \nu \cos^2 \alpha \right)} \frac{1}{4\epsilon}
\]

RELACIÓN DE CARGA AXIAL TOTAL CON LA DEFORMACIÓN AXIAL

La carga total y el momento torsional total se relacionan mediante la ecuación:

\[
F_T = C_1 \epsilon + C_2 \beta \\
M_T = C_3 \epsilon + C_4 \beta
\]

donde \(\beta\) es el ángulo de torsión por unidad de longitud del cable y \(\epsilon_{ij}\) es la deformación axial del cable. Ci = 1, 2, 3, 4 son constantes del cable.
Si el cable cuenta con varias capas, el momento flexionante en cada capa del alambre es:

\[m_{j} = \frac{\pi E_{j}}{4} \left[\frac{2 \sin \alpha_{j}}{2 + \nu_{j} \cos^{2} \alpha_{j}} R_{j}^{2} \right] e \quad (61) \]
y el momento total está dado por:

\[M_{t} = M_{1} + \sum_{j=2}^{N} m(j)m_{j} \]
donde

\[M_{1} = \frac{\pi E_{1}}{4} R_{1}^{4} \quad (63) \]

ESFUERZOS EN LOS ALAMBRES DEL CABLE DEBIDO A LA TENSION AXIAL

Primero se determinarán los esfuerzos debidos a la tensión axial sobre el cable. Para el caso del alambre central el esfuerzo axial está dado por:

\[\sigma_{r1} = \frac{F_{1}}{\pi R_{1}^{2}} \quad (64) \]
mientras que el máximo esfuerzo cortante está dado por:

\[\sigma_{m1} = \frac{2M_{1}}{\pi R_{1}^{3}} \quad (65) \]
donde \(F_{1} \) y \(M_{1} \) están dados por la ecuación (45) y (46) respectivamente.

Los alambres de las capas exteriores, están sujetos a carga axial, flexión, torsión, y cortante, \(T, G \) y \(G', H \) y \(N' \) respectivamente. Cada una de las cargas es calculada para cada capa, por lo tanto los esfuerzos correspondiente a cada carga son:

\[\tau_{j} = \frac{T_{j}}{\pi R_{j}^{2}} \quad j = 2,3,4,\ldots N \quad (66) \]

\[g_{j} = \frac{4\sigma_{j}}{\pi R_{j}^{2}} \quad j = 2,3,4,\ldots N \quad (67) \]

\[h_{j} = \frac{2H_{j}}{\pi R_{j}^{2}} \quad j = 2,3,4,\ldots N \quad (68) \]

\[n_{j} = \frac{N_{j}}{\pi R_{j}^{2}} \quad j = 2,3,4,\ldots N \quad (69) \]

Que son los esfuerzos a que están sometido los alambres del cable trenzado debido a la carga axial.

ESFUERZOS EN LOS ALAMBRES DEL CABLE DEBIDO AL MOMENTO FLEXIONANTE

Para el alambre central que sin duda alguna está sujeto a flexión:

\[\tau_{0} = \frac{MR}{I_{1}} = \frac{\frac{E_{1}}{\rho} R_{1}}{I_{1}} = \frac{ER_{1}}{e} \quad (68) \]

Para las demás capas, cada uno de los alambres está sometido también a cargas flexionantes y cortantes dadas por las Ecs. (55) a (57). Los esfuerzos debido a tales cargas se calculan mediante las ecuaciones:

\[\sigma_{e} = \frac{4m_{j} s}{\pi R_{j}} \cos \frac{k_{j} s}{e} \quad (69) \]

\[\sigma_{y} = \frac{4m_{j} s}{\pi R_{j}} \sin \alpha_{j} \cos \frac{k_{j} s}{e} \quad (70) \]

\[\sigma_{h} = \frac{2m_{j} s}{\pi R_{j}} \sin \alpha_{j} \sin k_{j} s \quad (71) \]

Es así que es posible sumar convenientemente los esfuerzos provocados por la tensión axial y el momento flexionante[1].

ESFUERZOS CALCULADOS MEDIANTE LA ECUACIÓN DE POFFENBERGER-SWART

Debido al complejo comportamiento interno entre los alambres del cable durante la flexión de un conductor eléctrico, Poffenberger y Swart[2], encontraron una ecuación simplificada para el cálculo de esfuerzos idealizado en la proximidad de los apoyos rígidos del cable. La figura 7 muestra el perfil de la región próxima en los apoyos, de un cable conductor axial constante y vibrando transversalmente. Las consideraciones aplicadas fueron:

1. En la región \(0 < x < a \), donde \(a \) es muy corta comparada con la longitud de la onda \(\lambda \), la configuración del cable se aparta significativamente del perfil senoidal.
2. El eje de centros del conductor, el cual parte horizontalmente del apoyo rígido, se vuelve asintótico con la línea del perfil senoidal conforme se incrementa la distancia desde el soporte rígido.
3. La línea punteada, la cual se considera recta dentro de la región \(0 < x < a \), representa la continuación del perfil senoidal desde el cual el eje del conductor se desvía.
4. Los amplitudes de movimiento en las vecindades de las distancias \(x = a \), son lo suficientemente pequeñas para despreciar las fuerzas de inercia.

Aplicación de la teoría de esfuerzos en cables trenzados en conductores tipo ACSR
Bajo las consideraciones anteriores se formuló la ecuación diferencial siguiente:

\[
\frac{d^2 y}{dx^2} = \frac{H}{EI} y
\]
(72)

Con las siguientes condiciones en la frontera:

En \(x = a \):

\[y_r = 0 \]
(73)

En \(x = 0 \):

\[\frac{dy}{dx} \bigg|_{x=0} = \beta \]
(74)

Que permiten llegar a:

\[r_i = A e^{r_i x} + C_1 x + C_2 \]
(75)

Por otro lado si se toma el perfil de vibración del cable con origen en \(x_i \), punto donde la línea del perfil senoidal inicia, y cuya ecuación está dada por:

\[
y = \frac{2\pi f}{V_r} \left(x - x_i \right)
\]
(76)

se puede demostrar que \(\beta \) está dado por:

\[
\beta = \frac{2\pi f y_{\text{max}}}{H \sqrt{\rho}}
\]
(77)

lo cual permite encontrar la curvatura en el apoyo rígido \((x=0) \). Manejando adecuadamente las ecuaciones anteriores se puede obtener:

\[
\frac{d^2 y}{dx^2} \bigg|_{x=0} = p \beta
\]
(78)

y basado en la figura se llega a la ecuación:

\[
y = -y_a + f x + M
\]
(79)

como lo que se requiere es la curvatura en \(x=0 \), entonces

\[
\frac{d^2 y}{dx^2} \bigg|_{x=0} = \frac{p^2 y_{\text{max}}}{e^{r_i x} - 1 + px}
\]
(80)

Simplificadamente se toman los alambres de la capa externa para calcular los esfuerzos, ya que es el que mas lejos se encuentra de la línea central del cable. Como la capa externa es de aluminio, un solo alambre estará sometido a los esfuerzos siguientes:

\[
\sigma = \frac{M}{2} = \frac{E_a I_a}{2} \frac{d^2 y}{dx^2} \bigg|_{x=0}
\]
(81)

La Ec. (82) es la ecuación de Poffenberger-Swart en donde \(Y_b \) es una amplitud flexionante pico a pico medida a una distancia de 89 mm del apoyo rígido en cualquiera de los extremos del cable tensado (Figura 7). Valores de \(Y_b \) para varios de los conductores y para diferentes perfiles de tensión última aparecen en tablas del EPR(2).

APLICACIONES

Las características de los cables ampliamente utilizados se presentan en la Tabla 1. Los esfuerzos que se calculan son debido a la tensión constante en cable y debido a vibración transversal.

Un procedimiento para calcular los esfuerzos utilizando la teoría de cables tensados; es el mostrado en el diagrama de la figura 8.

Primero se calculan los esfuerzos provocados por la tensión constante en el cable y se determinarán en los extremos del cable que es el punto donde normalmente fallan los conductores; ahí se considera que no existe rotación torsional \(\beta \) por lo que en las Ec. (47) y (48) no debe aparecer el segundo término. Al suponer arbitrariamente un valor pertinente para la deformación axial del cable \(\xi_\alpha \) es posible encontrar la carga total sobre el cable mediante las Ec.(31) a (46); después mediante la Ec.(47) obtener el valor de la constante \(C_1 \) y mediante la Ec. (48) obtener \(C_3 \). Los valores de \(C_1 \) y \(C_3 \) no cambian, por lo que si ahora se aplica un valor de 0.25 Tú, se puede encontrar el valor de la deformación axial correspondiente y de ahí todas las cargas y esfuerzos correspondientes. Datos de valores de las cargas y esfuerzos correspondientes se muestran en la Tabla 2, 3, 4 y 5 para cada cable. En ellos se puede observar que los esfuerzos debido a los cargas flexionantes y torsionantes son casi despreciables comparados con los esfuerzos debido a las cargas de tensión \(T_i \) de contacto \(X_i \) en cada alambre.

Esfuerzos flexionantes debido a vibración transversal.

Los esfuerzos que aquí se determinan, se deben a la vibración transversal de los cables. Con tal propósito se requiere encontrar el radio de curvatura en la vecindad de los apoyos y mediante las Ec.(55) a (57) encontrar los momentos flexionantes respectivos y posteriormente sus esfuerzos con las Ec.(59) a (71). El radio de curvatura se encuentra aplicando la teoría de vibración transversal en cuerdas con rigidez flexionante investigada por varios autores [7-8] y aplicada ya por Colin et al.[9] en vibraciones para dos conductores eléctricos. Los esfuerzos de flexión calculados debido a la vibración transversal se presentan en la tabla 4, en donde se
puede ver que comparados con los esfuerzos flexionantes debido a la tensión resultaron en general 7 veces más grandes.

Esfuerzos calculados mediante la ecuación de Poffenberger-Swartz.

Los esfuerzos son calculados mediante la ecuación 82 y con tal propósito se debe conocer la amplitud flexionante máxima permisible Yb/2, la cual está estipulada en tablas. El valor de los esfuerzos encontrados corresponden a la capa más externa del cable y se presentan en la Tabla 6.

DISCUSIÓN DE RESULTADOS

Las cargas más importantes en cada alambre son las tensiones individuales \(T_j \); y carga de contacto por unidad de longitud \(X_j \); las otras cargas se pueden considerar despreciables.

Los esfuerzos limitantes corresponden a las capas externas de alambres de aluminio \(j=3,4,5 \) y se puede ver en las tablas 2 a 5 que las tensiones individuales provocan esfuerzos axiales \(\sigma_x \) en cada alambre que son muy similares entre ellas y mucho más grandes que los otros esfuerzos debidos a las otras cargas.

El esfuerzo flexionante \(\sigma_y \) en los alambres de la capa más externa calculado mediante la ecuación simplificada de Poffenberger-Swartz resultaron ligeramente mayores que los esfuerzos flexionantes calculados por la teoría de cable trenzado debido a la diferencia en el cálculo del radio de curvatura por uno y otro método.

CONCLUSIÓN

No son los esfuerzos flexionantes los que hacen fallar a los conductores eléctricos, pues los esfuerzos axiales debido a la tensión en cada alambre de aluminio son 5 a 6 veces mayores, y éstos a su vez, menores en un 50% al límite de resistencia establecido para el aluminio que es de 10^8 MPa [10]. Sin embargo, coinciden con el límite de resistencia de 8.5 MPa correspondiente a una amplitud flexionante pico a pico dentro del rango de 0.2 a 0.3 mm correspondiente a una vida de trabajo de 5x10^6 ciclos [2]. Lo que es importante considerar son las cargas de contacto \(X_j \) ya que debido a su magnitud y el movimiento relativo entre los alambres, éstos pueden fallar por desgaste.

REFERENCIAS

<table>
<thead>
<tr>
<th>Características de cables</th>
<th>CURLEA W</th>
<th>BOBOLINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro del cable; mm</td>
<td>31.645</td>
<td>36.25</td>
</tr>
<tr>
<td>No. Alambres de Aluminio</td>
<td>54</td>
<td>45</td>
</tr>
<tr>
<td>Diámetro de alambre de Aluminio; mm</td>
<td>3.515</td>
<td>4.53</td>
</tr>
<tr>
<td>No. Alambres de Acero</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Diámetro de alambres de cero mm</td>
<td>3.515</td>
<td>3.02</td>
</tr>
<tr>
<td>Módulo de elasticidad del acero; N/m</td>
<td>206.4x10^8</td>
<td>206.4x10^9</td>
</tr>
<tr>
<td>Módulo de Elasticidad del Aluminio; N/m</td>
<td>68.8x10^8</td>
<td>68.8x10^9</td>
</tr>
<tr>
<td>Elmin ; N-m²</td>
<td>38.77</td>
<td>69.98</td>
</tr>
<tr>
<td>Densidad; kg/m</td>
<td>1.98</td>
<td>2.339</td>
</tr>
<tr>
<td>Amplitud Yb; mm</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>Tensión de Ruptura, N</td>
<td>162880</td>
<td>167200</td>
</tr>
</tbody>
</table>

Tabla 1
Figura 1. Esquema de pruebas de laboratorio para conductores eléctricos.

Figura 2. Configuración de cables.

Figura 3. Componentes de radio de curvatura por unidad de longitud en el estado no deformado.

Figura 4. Fuerzas sobre un solo alambre del cable trenzado en una de las capas.

Figura 5. Desarrollo de la línea de centro en el cable.

Figura 6. Alambre sometido a flexión pura.

Figura 7. Apoyo rígido en uno de los extremos del cable cercano a una distancia a mocho menor de r.
Figura 8. Diagrama de flujo de cálculo de esfuerzos en cables trenzados.
<table>
<thead>
<tr>
<th>UBICACION</th>
<th>CARGAS DEBIDO A LA TENSION</th>
<th>CARGAS DEBIDO A LA FLEXION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (N)</td>
<td>G' (N-m)</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>1802.6</td>
<td>0</td>
</tr>
<tr>
<td>CAPA NO 2</td>
<td>1764.3</td>
<td>-0.014875</td>
</tr>
<tr>
<td>CAPA NO 3</td>
<td>547.23</td>
<td>-0.0085456</td>
</tr>
<tr>
<td>CAPA NO 4</td>
<td>546.4</td>
<td>-0.005767</td>
</tr>
<tr>
<td>CAPA NO 5</td>
<td>546.13</td>
<td>-0.0043379</td>
</tr>
</tbody>
</table>

Tabla 2. Cargas del cable ((CURLEAW)).

<table>
<thead>
<tr>
<th>UBICACION ALAMBR</th>
<th>ESPUEZ DEBIDO A LA TENSION</th>
<th>ESPUEZ DEBIDO A LA FLEXION POR VIBRACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_x MPa</td>
<td>σ_y MPa</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>185.76</td>
<td>0</td>
</tr>
<tr>
<td>CAPA NO 2</td>
<td>181.81</td>
<td>-3.48</td>
</tr>
<tr>
<td>CAPA NO 3</td>
<td>56.395</td>
<td>-2.004</td>
</tr>
<tr>
<td>CAPA NO 4</td>
<td>56.308</td>
<td>-1.352</td>
</tr>
<tr>
<td>CAPA NO 5</td>
<td>56.208</td>
<td>-1.017</td>
</tr>
</tbody>
</table>

Tabla 3. Esfuerzos en el cable ((CURLEAW)).

<table>
<thead>
<tr>
<th>UBICACION</th>
<th>CARGAS DEBIDO A LA TENSION</th>
<th>CARGAS DEBIDO A LA FLEXION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (N)</td>
<td>G' (N-m)</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>1138.4</td>
<td>0</td>
</tr>
<tr>
<td>CAPA NO 2</td>
<td>1114.2</td>
<td>-0.008071</td>
</tr>
<tr>
<td>CAPA NO 3</td>
<td>1077.38</td>
<td>-0.020908</td>
</tr>
<tr>
<td>CAPA NO 4</td>
<td>776.13</td>
<td>-0.012703</td>
</tr>
<tr>
<td>CAPA NO 5</td>
<td>775.79</td>
<td>-0.009097</td>
</tr>
</tbody>
</table>

Tabla 4. Cargas del cable ((BOBOLIKN)).

<table>
<thead>
<tr>
<th>UBICACION ALAMBR</th>
<th>ESPUEZ DEBIDO A LA TENSION</th>
<th>ESPUEZ DEBIDO A LA FLEXION POR VIBRACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_x MPa</td>
<td>σ_y MPa</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>158.93</td>
<td>0</td>
</tr>
<tr>
<td>CAPA NO 2</td>
<td>155.55</td>
<td>-2.985</td>
</tr>
<tr>
<td>CAPA NO 3</td>
<td>48.234</td>
<td>-2.291</td>
</tr>
<tr>
<td>CAPA NO 4</td>
<td>48.156</td>
<td>-1.3919</td>
</tr>
<tr>
<td>CAPA NO 5</td>
<td>48.134</td>
<td>-9.9689</td>
</tr>
</tbody>
</table>

Tabla 5. Esfuerzos en el cable ((BOBOLIKN)).

<table>
<thead>
<tr>
<th>CABLE</th>
<th>CABLE "BOBO LINK"</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_y MPa</td>
<td>σ_y MPa</td>
</tr>
<tr>
<td>8.512</td>
<td>9.39</td>
</tr>
</tbody>
</table>

Tabla 6. Esfuerzos flexionantes ecuación de Poffeberger-Swart.